Embedded Software

CS 145/145L

Caio Batista de Melo

CS145 - Spring ‘22

Announcements (2022-05-05)

e Project 3 is due tomorrow
o Check the rubric!

e Homework 3 is also due tomorrow

% CS145 - Spring ‘22)

e Analog-digital conversion

o Rushed last class, so let’s revisit!

e ATmega32’'s ADC

e Project4

% CS145 - Spring ‘22 3

Analog-Digital Conversion

(ADC)

Analog-Digital Conversion

(ADC)

 Digital has two values: on and off
* Analog has many (infinite) values
 Computers don’t really do analog, they quantize

digitized point
analog ehzedp

voltage . . :
signal digitized signal

!

% CS145 - Spring 22 5

ADC Parameters

e Range

o What are the minimum/maximum possible values

e Sampling Rate

o How often we get a new data point

e Precision

o How many bits we can use to represent the values

% CS145 - Spring 22 6

ADC 0~5V Example

Reads the voltage applied to an analog input pin and
returns a number between 0 and 2N-1 that represents
the voltages between O and 5 V.

4 bit quantization 3 bit quantization

2 bit quantization

Quantized sample

rrrrrr>0 T T

T T] S S B B B N Rt
810712 14516 [D R R vt SR | e b SR P W |-

amp
% CS145 - Spring 22 7

4-bit Quantization

i3 | 62 | b1 | ba | PP Nty
Decimal

0 0 0 0 0 0

Va 0 0 0 1 1 0.315
magigsggt‘. . | 0 0 1 0 2 0.630
ol . 0 0 1 1 3 0.937
L 0 1 0 0 4 1.268

1 0 1 0 1 5 1.577

. 0 1 1 0 6 1.892

> - s Lol a Lol & | o
. 1 0 0 1 9 2.83

- 1 0 1 0 10 3.14

T 1L L i i L a f b b f b .. digital 1 0 1 1 11 3.45

S S 2328854228833 s 1 1 0 0 12 3.78

ST s 22225 s 1 1 0 1 13 4.09

1 1 1 0 14 4.4

1 1 1 1 15 4.72

S CS145 - Spring 22 8

Intuitive Conversion

Z
g

3 | w2 | b1 | vo | PP [yvantov
Decimal

o o] o] o 0 0

0 0 0 1 1 0.315
o | o | 1| o 2 0.630
o | o | 1 | 1 3 0.937
o | 1 | o | o 4 1.268
o | 1 | o | 1 5 1577
0 1 1 0 6 1.892
o | 1 | 1 | 1 7 2.2
1 [0l 00 8 251
1 | o | o | 1 9 2.83
1 | o | 1 | o 10 314
1 0 1 1 11 3.45
1 | 1| o | o 12 3.78
1 1 | o | 1 13 4.09
1 1 1 0 14 4.4
1 | 1 | 1 | 1 15 4.72

The pattern is repeated
 The MSB is contributing to half of the
voltage.

Vout=b3*23+b4*22+b1*21+b0*2O

b3 is contributing to 50% of the voltage
b2 to 25%

b1to 12.5%

b0 to 6.25%

CS145 - Spring ‘22 9

Intuitive Hardware

Vout

Voltage divider

(single bit)

R R R
W i e 3 =
2R 2R 2R 2R 2R
A B C D

High quality signal without noise but expensive
because resistances should have precise tolerances
* e.g., audio systems

CS145 - Spring 22 10

ADC Layout

0 Va< Vb
1 Va > Vb
Comparator
Input
M D Output
V. ;|T 0/1] uP iy
—pl |
Vb

n-bit
—<n-bit DAC [«——[D DD,

% CS145 - Spring ‘22 !

ADC Result

« Let's say, the sampled input is 5.8V

S
VDAC > VIN |:. 82.‘50\/8/: .
/ ;o : The reference of the ADC is 10V. When
el " . o : oy s
(1000 .‘g_g.;g conversion starts, we guess it is 0b1000,
by m}' = which means half of the 10V reference.
ooy oy
VIN > VDAC f A a}f A_/\A 1921
et \6.875Y : : :
IS e - * Now this voltage will be compared to the input
a1 11 80
\8.75Y/ voltage and based on the comparator output,

the output of the register will be changed.
Successive Approximation

(Binary search)

% CS145 - Spring ‘22 .

ADC on the ATmega32

ATmega32 Layout

(XCKIT0) PBO
(T1) PB1
(INT2/AINO) PB2

(OCO/AIN1) PB3

PAO (ADCO)
PA1 (ADC1)
PA2 (ADC2)

PA3 (ADC3)
ADC Input channels

W 0O N OO O A N

(SS) PB4 PA4 (ADC4)
(MOSI) PB5 PA5 (ADCS5)
(MISO) PB6 PA6 (ADCS)
(SCK) PB7 PA7 (ADC7)
"RESET AREF External ADC Ref. Voltage
VCcC 10 AGND Analog Gnd (ADC Ground)
GND 1 AVCC ADC Vcc
XTAL2 12 PC7 (TOCS2)
XTAL1 CJRE PC6 (TOCS1)
(RXD) PDO 14 PC5 (TD1)
(TXD) PD1 15 PC4 (TDO)
(INTO) PD2 CJEIS PC3 (TMS)
(INT1) PD3 PC2 (TCK)
(OC1B) PD4 18 PC1 (SDA)
(oc1A) pps CJEE PCO (SCL)
(IcP1) PD6 CjiPdl PD7 (OC2)

https://www.electronicwings.com/avr-atmega/atmega1632-adc

S CS145 - Spring ‘22

14

https://www.electronicwings.com/avr-atmega/atmega1632-adc

ADC Registers

e ADMUX: ADC Multiplexer selection register

e ADC Data Registers

o ADCH: Holds digital converted data higher byte
o ADCL: Holds digital converted data lower byte

e ADCSRA: ADC Control and Status Register

% CS145 - Spring 22 s

ADC Multiplexer Selection Register (ADMUX)

Page 214 on manual

ADC Multiplexer

'/\ Right or left shift

Selection Register —
ADMUX

Bit

Read/Write
Initial Value

7

6

5

4

3

2

1

0

| REFS1

REFS0O

ADLAR

MUX4

MUX3

MUX2

MUX1

MUX0 | ADMUX

R/W
0

R/W
0

R/W
0

R/W
0

R/W
0

R/W
0

R/W
0

RW
0

e Bit 7:6 — REFS1:0: Reference Selection Bits

These bits select the voltage reference for the ADC, as shown in Table 83. If these bits are
changed during a conversion, the change will not go in effect until this conversion is complete
(ADIF in ADCSRA is set). The internal voltage reference options may not be used if an external
reference voltage is being applied to the AREF pin.

Table 83. Voltage Reference Selections for ADC

REFS1 | REFS0 | Voltage Reference Selection
0 0 AREF, Internal Vref turned off
0 1 AVCC with external capacitor at AREF pin
1 0 Reserved
1 1 Internal 2.56V Voltage Reference with external capacitor at AREF pin

S CS145 - Spring 22 16

ADMUX[0:4]

Page 215 on manual

e Decides on multiplexing of the ports

e |Let's check the manual

e Why would you use differentials?

% CS145 - Spring 22 .

USB Example

A Data Transfer

66179, (6179, ‘61‘)7, 660’7

L3
A [\A 0111
0011 w \f\JV

Noise

% CS145 - Spring ‘22 18

USB Example (Two Ports)

V, D*+N
USB
A B e . B
-«
- -
-V, D +N
|
Gnd - 4.0, -4.0
D+ - 2.0,-2.0
D-

(D" -D)
(D" +N— (D" +N))

% CS145 - Spring ‘22 19

ADC Data Registers

ADMUX]5]

The ADC Data
Register - ADCL and
ADCH

ADLAR =0

ADLAR =1

Bit

Read/Write

Initial Value

Bit

Read/Write

Initial Value

15 14 13 12 11 10 9 8
| - - - - - - ADC9 ADC8 | ADCH
| Apcz ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADCO | ADCL
7 6 5 4 3 2 1 0
R R R R R R R R
R R R R R R R R
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8
| Abce ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 | ADCH
| Abci ADCO - - - - - - | ADCL
7 6 5 4 3 2 1 0
R R R R R R R R
R R R R R R R R
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

CS145 - Spring ‘22

20

ADC Control and Status Register A (ADSCRA)

Page 216

ADC Control and
Status Register A —
ADCSRA

Bit

Read/Write

Initial Value

7

6

5

4

3

2

1

0

| ADEN

ADSC

ADATE

ADIF

ADIE

ADPS2

ADPS1

ADPSO | ADCSRA

R/W
0

R/W
0

R/W
0

R/W
0

R/W
0

R/W
0

R/W
0

RW
0

e Bit 7 - ADEN: ADC Enable

Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the
ADC off while a conversion is in progress, will terminate this conversion.

e Bit 6 — ADSC: ADC Start Conversion

In Single Conversion mode, write this bit to one to start each conversion. In Free Running Mode,
write this bit to one to start the first conversion. The first conversion after ADSC has been written
after the ADC has been enabled, or if ADSC is written at the same time as the ADC is enabled,
will take 25 ADC clock cycles instead of the normal 13. This first conversion performs initializa-
tion of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is complete,
it returns to zero. Writing zero to this bit has no effect.

S CS145 - Spring 22 21

Project 4

Project 4

Design an embedded computer centered around the ATMega32 microcontroller.
For input: use a keypad and an analog-to-digital converter (ADC).
For output: use an LCD.

Write a C program that implements a simple voltmeter. Your voltmeter must take a
sample every 500ms and update the display accordingly. Your system should:

use the maximum ADC precision;

show: (1) instantaneous, (2) max, (3) min, and (4) average voltages;

always display instantaneous voltage when powered;

reset minimum, maximum, and average voltages on a push of a button;

start sampling those values after another push of a button;
https://canvas.eee.uci.edu/courses/4504//assignments/929274

% CS145 - Spring ‘22 23

https://canvas.eee.uci.edu/courses/45047/assignments/929274

Project 4 - Grading

e Basic Project

©)

©)

©)

©)

©)

Displays all 4 readouts (60%, 15% each)

Sampling rate should be at least 2 samples/second (i.e., every 500ms) (10%)
One button resets max/min/avg to blank (i.e., -----) (10%)

One button starts max/min/avg (10%)

Use all 10 bits precision (10%)

e Extra Credit

%

©)

©)

Early submission by 2022-05-14 (5 points)
Support differential inputs (10 points)
m V1 and V2, display V1 - V2 (including negative values!)

CS145 - Spring ‘22

24

General Voltmeter Layout

LCD

. [0,5.0V]
. 10 bit
« 0-1023 <= 0.0t0 5.0V

Stop / Go and
Reset s

% CS145 - Spring ‘22 55

Preliminary Tests

LCD LCD

Software

Software

AO AO

40 40

Stop / Go and

Reset Stop / Go and

S Reset

Connect to zero Connect to 5V

& CS145 - Spring 22 26

Getting a Reading

int get sample() {
Gets a single sample, if you want
many you’'d call it many times.

Why int?

return result; 10 bits, so we need 2 bytes

% CS145 - Spring 22 -

ADMUX Reference Selection

e Bit 7:6 — REFS1:0: Reference Selection Bits

These bits select the voltage reference for the ADC, as shown in Table 83. If these bits are
changed during a conversion, the change will not go in effect until this conversion is complete
(ADIF in ADCSRA is set). The internal voltage reference options may not be used if an external
reference voltage is being applied to the AREF pin.

Table 83. Voltage Reference Selections for ADC

REFS1 | REFS0 | Voltage Reference Selection
0 0 AREF, Internal Vref turned off
—_—b 0 1 AVCC with external capacitor at AREF pin
1 0 Reserved
1 1 Internal 2.56V Voltage Reference with external capacitor at AREF pin

S CS145 - Spring 22 28

Analog Reference

0.1uF

+5V p—

& CS145 - Spring 22 29

Completing get_sample

Depends how you're connecting things
To read from PAO, this should be 00000

int get sample() { int get sample() { \
ADMUX = 0ObO1OKxxxX|;
ADCSRA = 0blllyyyyyyl
while (bit 6 of JADCSRA);

return result; return result;

Depends how you’re converting things
To do single conversions, this could be 000000

% CS145 - Spring ‘22 30

Minimum Test Program

int main () {

char buf[20];
avr_init();
lcd _init();
while (1) {
sprintf(buf, "%d", get sample());
lcd _clr();
lcd pos(0, 9);
lcd puts2(buf);
avr_wait(500);

CS145 - Spring ‘22

Does this display volts?
No! It's a normalized
value without unit!

How do you convert it?
“De-normalize” it ;)

How do you keep track of

min/max/avg?
Use variables!

31

Converting from normalized to volts

sprintf(buf, "%.2f", (get sample() / 1023.0) * 5);

Store the value as an integer, only convert it at the very last moment.
This helps you keep precision!

You might need to change a setting in microchip studio so sprintf works with floats.
One of your classmates already figured this out, and they posted on EdStem!

% CS145 - Spring ‘22 3

Computing Min and Max

new sample = get sample();
if (new_sample > max) {
max = new_sample;

New variable!

Remember to use int for these variables!

% CS145 - Spring 22 33

Computing Average

SO . Avg = SO
S0, S1 —» Avg=(SO+S1)/2
S0,S1,S2 — Avg=(S0+S1+8S2)/3

int sum = @, count = 0O; Any possible problems

while (1) { with this code?
new_sample = get sample(); |
sum += new_sample; Likely for sum to overflow!
} sprintf(buf, "%.2f", sum / ++count); Use unsigned (long) long

% CS145 - Spring 22 24

See you next time :)

Q&A

