
CS145 - Spring ‘22

Embedded Software
CS 145/145L

Caio Batista de Melo

CS145 - Spring ‘22

Announcements (2022-05-05)

● Project 3 is due tomorrow
○ Check the rubric!

● Homework 3 is also due tomorrow

2

CS145 - Spring ‘22

Agenda

● Analog-digital conversion
○ Rushed last class, so let’s revisit!

● ATmega32’s ADC

● Project 4

3

4

Analog-Digital Conversion
(ADC)

CS145 - Spring ‘22

Analog-Digital Conversion
(ADC)

5

• Digital has two values: on and off
• Analog has many (infinite) values
• Computers don’t really do analog, they quantize

CS145 - Spring ‘22

ADC Parameters

● Range
○ What are the minimum/maximum possible values

● Sampling Rate
○ How often we get a new data point

● Precision
○ How many bits we can use to represent the values

6

CS145 - Spring ‘22

ADC 0~5V Example

7

Reads the voltage applied to an analog input pin and
returns a number between 0 and 2N-1 that represents
the voltages between 0 and 5 V.

CS145 - Spring ‘22

4-bit Quantization

8

CS145 - Spring ‘22

Intuitive Conversion

9

The pattern is repeated
• The MSB is contributing to half of the

voltage.

Vout = b3 * 23 + b4 * 22+ b1 * 21 + b0 * 20

b3 is contributing to 50% of the voltage
b2 to 25%
b1 to 12.5%
b0 to 6.25%

CS145 - Spring ‘22

Intuitive Hardware

10

Voltage divider
(single bit)

High quality signal without noise but expensive
because resistances should have precise tolerances

* e.g., audio systems

CS145 - Spring ‘22

ADC Layout

11

Output

0 Va < Vb

1 Va > Vb

uP

Vb

Va
0/1

CS145 - Spring ‘22

ADC Result

12

Successive Approximation
(Binary search)

• Let's say, the sampled input is 5.8V

• The reference of the ADC is 10V. When
conversion starts, we guess it is 0b1000,
which means half of the 10V reference.

• Now this voltage will be compared to the input
voltage and based on the comparator output,
the output of the register will be changed.

13

ADC on the ATmega32

CS145 - Spring ‘22 14

ATmega32 Layout

https://www.electronicwings.com/avr-atmega/atmega1632-adc

https://www.electronicwings.com/avr-atmega/atmega1632-adc

CS145 - Spring ‘22

ADC Registers

● ADMUX: ADC Multiplexer selection register

● ADC Data Registers
○ ADCH: Holds digital converted data higher byte

○ ADCL: Holds digital converted data lower byte

● ADCSRA: ADC Control and Status Register

15

CS145 - Spring ‘22

ADC Multiplexer Selection Register (ADMUX)
Page 214 on manual

16

Right or left shift

CS145 - Spring ‘22

ADMUX[0:4]
Page 215 on manual

17

● Decides on multiplexing of the ports

● Let’s check the manual

● Why would you use differentials?

CS145 - Spring ‘22

“1”, “1”, “1”, “0”

0011
0111

Noise

A

B

Data Transfer

18

USB Example

CS145 - Spring ‘22

USB Example (Two Ports)

+
Gnd
D+
D-

A B
USB

A B

V0 D
+ + N

-V0 D
- + N

(D+ - D-)
(D+ + N – (D- + N))

0 V
0

-V
0

4.0, -4.0

1 V
1

-V
1

2.0, -2.0

19

CS145 - Spring ‘22

ADC Data Registers

20

ADMUX[5]

CS145 - Spring ‘22

ADC Control and Status Register A (ADSCRA)
Page 216

21

22

Project 4

CS145 - Spring ‘22

Design an embedded computer centered around the ATMega32 microcontroller.
For input: use a keypad and an analog-to-digital converter (ADC).
For output: use an LCD.

Write a C program that implements a simple voltmeter. Your voltmeter must take a
sample every 500ms and update the display accordingly. Your system should:
● use the maximum ADC precision;
● show: (1) instantaneous, (2) max, (3) min, and (4) average voltages;
● always display instantaneous voltage when powered;
● reset minimum, maximum, and average voltages on a push of a button;
● start sampling those values after another push of a button;
https://canvas.eee.uci.edu/courses/45047/assignments/929274

23

Project 4

https://canvas.eee.uci.edu/courses/45047/assignments/929274

CS145 - Spring ‘22

● Basic Project
○ Displays all 4 readouts (60%, 15% each)

○ Sampling rate should be at least 2 samples/second (i.e., every 500ms) (10%)

○ One button resets max/min/avg to blank (i.e., -----) (10%)

○ One button starts max/min/avg (10%)

○ Use all 10 bits precision (10%)

● Extra Credit
○ Early submission by 2022-05-14 (5 points)

○ Support differential inputs (10 points)

■ V1 and V2, display V1 - V2 (including negative values!)

Project 4 - Grading

24

CS145 - Spring ‘22

General Voltmeter Layout

4.80

0.12 2.23

LCD

AVR

+

-

input
A0

Software

0 – 5.0 V

Stop / Go and
Reset

• [0, 5.0 V]
• 10 bit
• 0 – 1023 ⬄ 0.0 to 5.0V

3.14

25

CS145 - Spring ‘22 26

Preliminary Tests

Connect to zero Connect to 5V

CS145 - Spring ‘22 27

Gets a single sample, if you want
many you’d call it many times.

Why int?
10 bits, so we need 2 bytes

Getting a Reading

int get_sample() {

 // configure the ADC

 // start conversion

 // wait for conversion result

 return result;

}

CS145 - Spring ‘22

ADMUX Reference Selection

28

CS145 - Spring ‘22

Analog Reference

AVR

+5V

AREF

AVCC

0.1uF

29

CS145 - Spring ‘22 30

Completing get_sample

int get_sample() {

 // configure the ADC

 // start conversion

 // wait for conversion result

 return result;

}

int get_sample() {

 ADMUX = 0b010xxxxx;

 ADCSRA = 0b11yyyyyy;

 while (bit 6 of ADCSRA);

 return result;

}

Depends how you’re connecting things
To read from PA0, this should be 00000

Depends how you’re converting things
To do single conversions, this could be 000000

CS145 - Spring ‘22

Minimum Test Program

31

int main () {

 char buf[20];

 avr_init();

 lcd_init();

 while (1) {

 sprintf(buf, "%d", get_sample());

 lcd_clr();

 lcd_pos(0, 0);

 lcd_puts2(buf);

 avr_wait(500);

 }

}

Does this display volts?
No! It’s a normalized

value without unit!

How do you convert it?
“De-normalize” it :)

How do you keep track of
min/max/avg?

Use variables!

CS145 - Spring ‘22

Converting from normalized to volts

32

sprintf(buf, "%.2f", (get_sample() / 1023.0) * 5);

You might need to change a setting in microchip studio so sprintf works with floats.
One of your classmates already figured this out, and they posted on EdStem!

Store the value as an integer, only convert it at the very last moment.
This helps you keep precision!

CS145 - Spring ‘22

Computing Min and Max

33

new_sample = get_sample();

if (new_sample > max) {

 max = new_sample;

}New variable!

Remember to use int for these variables!

CS145 - Spring ‘22

Computing Average

34

S0 Avg = S0
S0, S1 Avg = (S0 + S1) / 2
S0, S1, S2 Avg = (S0 + S1 + S2) / 3

int sum = 0, count = 0;

while (1) {

 new_sample = get_sample();

 sum += new_sample;

 sprintf(buf, "%.2f", sum / ++count);

}

Any possible problems
with this code?

Likely for sum to overflow!

Use unsigned (long) long

See you next time :)

Q & A

