
CS145 - Spring ‘22

Embedded Software
CS 145/145L

Caio Batista de Melo

CS145 - Spring ‘22

Announcements (2022-05-12)

● We’ll try to have two guest lecturers this quarter!

● First one will be next Thursday (2022-05-19)
○ Talk about real-time systems

○ Active researcher – recently published in that field!

● Second one (tentatively) will be on the Tuesday following that (2022-05-24)
○ Industry speaker

○ TBD

2

CS145 - Spring ‘22

Agenda

● Recap

● Simple Cooperative Scheduler

● Problems
○ Timer Overrun

○ Utilization

○ Worst-Case Execution Time (WCET)

● Preemptive Scheduler
○ Scheduling States

○ Priorities

● Examples

3

4

Recap

CS145 - Spring ‘22

State Machine

ON

SET_BIT(PORTB, 0);

OFF

CLR_BIT(PORTB, 0);

!GET_BIT(PINB, 1)

Init

DDRB = 1;

Idle

GET_BIT(PINB, 1)

avr_wait(500);

avr_wait(500);

5

CS145 - Spring ‘22

Synchronous State Machine

ON

SET_BIT(PORTB, 0);

OFF

CLR_BIT(PORTB, 0);

!GET_BIT(PINB, 1)

Init

DDRB = 1;

Idle

GET_BIT(PINB, 1)

Period:
500ms

6

CS145 - Spring ‘22 7

Concurrent Synchronous State Machines

btn_press = !GET_BIT(PINB, 1);

Init

DDRB = 1;
char btn_press = 0;

Check
Press

Period:
10ms

OFF

SET_BIT(PORTB, 0);

ON

CLR_BIT(PORTB, 0);

btn_press!btn_press
Period:

500ms

8

Sharing Time Over Tasks

CS145 - Spring ‘22

Sharing Time

● You can have multiple things going on at once
○ Checking for input

○ Blinking a light

○ Playing a note

● Without multi-processing (i.e., if you can only run

one task at a time), how can you do everything?

● Run each thing for a little bit
○ Share the processor’s time with all your tasks

9

10

Simple Cooperative Scheduler

CS145 - Spring ‘22

Task Structure

11

typedef struct task {

 int state; // Task's current state

 unsigned long period; // Task period

 unsigned long elapsedTime; // Time elapsed since last task tick

 int (*TickFct)(int); // Task tick function

} task;

synchSM task from zybooks

CS145 - Spring ‘22

Cooperative Scheduler

12

// For each task, call task tick function if task's period is up

for (i=0; i < tasksNum; i++) {

 if (tasks[i].elapsedTime >= tasks[i].period){

 // Task is ready to tick, so call its tick function

 tasks[i].state = tasks[i].TickFct(tasks[i].state);

 tasks[i].elapsedTime = 0; // Reset the elapsed time

 }

 tasks[i].elapsedTime += tasksPeriodGCD;

}

Scheduler from zybooks

CS145 - Spring ‘22

Add Interrupt Handling

● Set interrupts to happen whenever you want to check for new tasks
○ Probably related to tasks’ periods

● Whenever your interrupt happens, you go through all your tasks in the ISR

● Assuming all tasks finish quickly, this should allow everything to execute
according to their periods.

13

14

Problems

CS145 - Spring ‘22

Timer Overrun

15

The tasks take longer to complete their states than their period.

CS145 - Spring ‘22

Utilization

16

How much of the available time we’re using.
In this example, for 500ms periods, we use 550 / 500 = 110%

CS145 - Spring ‘22

Worst-Case Execution Time
(WCET)

17

WCET is used a lot in real time systems!
For example, what is the maximum time to process a video frame;

Or how long it takes to finish an ADC conversion (page 206 of manual).

18

Preemptive Scheduler

CS145 - Spring ‘22

Scheduling States

19

● Tasks goes through these 3 states;

● A scheduler picks one of the ready tasks to execute;

● What makes a task stay in waiting state?

● What if there are many ready tasks?

CS145 - Spring ‘22

Prioritization

● Different tasks might have different levels of importance

● Your scheduler should try to execute the most important ones first

● To achieve this, it should be able to stop a task mid-execution

20

CS145 - Spring ‘22

Priorities: Example

21

Multiple tasks in a car

● What’s more important?
1. Blinking a turning signal before changing lanes

2. Braking when a collision is imminent

3. Changing the radio station

● You probably rank them [2] > [1] >> [3]

● Need to make sure that [2] executes
whenever it needs!

CS145 - Spring ‘22

Preemptive Scheduler

22

B stops executing so A can execute!
Where does B start executing from after the pause?

Chooses the most important task from the ready pool.

CS145 - Spring ‘22

States for a Preemptive Scheduler

23

Anything changes?

Yes!

New transition from
executing to ready

24

Examples

CS145 - Spring ‘22 25

Real Time Systems (Autonomous Vehicles)

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9470238

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9470238

CS145 - Spring ‘22

Real Time Systems (Pacemaker)

26

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6200049

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6200049

CS145 - Spring ‘22

Real Time Operating Systems

● RTEMS: https://github.com/RTEMS/rtems
○ Can run on simulators: https://devel.rtems.org/wiki/Developer/Simulators/gem5

● uC/OS: https://github.com/weston-embedded/uC-OS2

● RTOSes on Raspberry Pi:
○ https://www.cse.unr.edu/~fredh/papers/conf/190-rartosotrp/paper.pdf

○ https://github.com/PicoCPP/RPI-pico-FreeRTOS

○ https://pebblebay.com/raspberry-pi-embedded/

27

https://github.com/RTEMS/rtems
https://devel.rtems.org/wiki/Developer/Simulators/gem5
https://github.com/weston-embedded/uC-OS2
https://www.cse.unr.edu/~fredh/papers/conf/190-rartosotrp/paper.pdf
https://github.com/PicoCPP/RPI-pico-FreeRTOS
https://pebblebay.com/raspberry-pi-embedded/

See you next time :)

Q & A

28

