
CS145 - Spring ‘22

Embedded Software
CS 145/145L

Caio Batista de Melo

CS145 - Spring ‘22

Project 1

Links should be available and rubric visible:
● https://canvas.eee.uci.edu/courses/45047/assignments/929268
● https://canvas.eee.uci.edu/courses/45047/assignments/929269

2

https://canvas.eee.uci.edu/courses/45047/assignments/929268
https://canvas.eee.uci.edu/courses/45047/assignments/929269

CS145 - Spring ‘22

Office Hours

Tuesday and Thursday: 10-11am @ ICS 415
Starting today :)

3

CS145 - Spring ‘22

• Design an embedded computer centered around the ATMega32 microcontroller.
For input, use a push button. For output, use an LED. Write a C program that
blinks the LED on/off for as long as the push button is pressed. Initially, use
instruction timing to control the LED on/off rate (for this step, use the internal
1MHz clock). Then, revise your timing based on one of the ATMega32 internal
timers (for this step, use the external 8MHz crystal). The blinking rate should be
500ms on and 500ms off.

• Template resources on Canvas
• Make sure you work it at 1MHz completely before jumping to 8MHz.
• After downloading Microchip make the USB connection to your Atmega Processor

for the prerequisite tests so that you can check if you can communicate properly.
• You need to select the ATMEGA32 or ATMEGA32A as the processor in the

dropdown.

Recap

4

CS145 - Spring ‘22

In-System
Programming
Interface (ISP)

 uC

 AVR

Programmer

PC

USB

Vcc
+5V

Gnd Gnd

5

Connecting to ATmega32 Microcontroller

https://caiobatista.com/uploads/courses/uci/s22/cs145/connector.png

https://caiobatista.com/uploads/courses/uci/s22/cs145/connector.png

CS145 - Spring ‘22

Layout is used just for showing the
connections, not schematic accuracy

AVR
(ATMEGA32)

PB0

LED Connection Layout

6

CS145 - Spring ‘22

● General Purpose Input Output (GPIO) interface
○ Send/receive 0 or 1 to/from any kind of device
○ Control and communicate with the external/physical world

● 4 Ports (A,B,C,D) -> 8 bits long
○ AVR is an 8-bit processor

■ Computations on 8 bits as the basic units of operation (Internal 8-bit ALU)
■ Can you do 32-bit or 64-bit operations?

● In total 32 I/O pins, equivalent in function
○ We can control 32 things at the same time, for example (some of them might be busy)
○ You can use any port (PA, … PD)
○ You can mix the ports and control them at the bit level via software (e.g., when you need 10 bits)

Ports

7

CS145 - Spring ‘22

ATmega Ports

8

CS145 - Spring ‘22

GPIO Software Levels Hardware Electric Levels

ON 1 +5V

OFF 0 0V (GND)

GPIO States

9

CS145 - Spring ‘22

GPIO Blackbox

What is the internal working?

?PB0

10

CS145 - Spring ‘22

GPIO Blackbox and Microprocessor

uP decides the connection of input to
output through software

uP

+5V

PB0

ON

OFF

11

CS145 - Spring ‘22

GPIO Blackbox

Final connection with the LED, creating a circuit

PB0

12

Software

13

CS145 - Spring ‘22

● Allows to control I/Os
● Functions of initializing, reading, writing from

memory.
● In addition to being like a variable like operator it

mainly has side-effects.
● The side-effect is desirable
● Each GPIO has 3 SFRs (side-effects).

Special Function Register (SFR)

14

CS145 - Spring ‘22

• Syntax to call output, input and
direction

• Case sensitive
• Port names can be substituted
• These are our programming

interfaces
• They are defined as unsigned

char in their respective header files.
• E.g.- unsigned char PORTB;

• Included in the header files (avr.h)

PORT (e.g., B) PIN (B) DDR (B)

Side Effects Output Input Direction

0 - 255

SFR Side Effects

15

CS145 - Spring ‘22

C DATA TYPES (in AVR) AVR(SIZES)

char 8 bit

short 10 bits

int 16 bits

long 32 bits

long long 32 bits

Data Types

16

CS145 - Spring ‘22

Software to Physical Pin Layout

07

PORTB

PINB

DDRB

PB

LSBMSB

0

7
● Each SFR has a data register

through which you can control
the physical pins as shown in
the figure

● You can read and write to these
like any variables

17

CS145 - Spring ‘22

● By changing the LSB in the DDR
register we can make the I/O pin
an output (1) or input (0)

● Here in the given figure the pin 0
of PORT B is initialized as output

Data Direction Register (DDR) Functionality

07

PORTB

PINB

DDRB

PB

LSBMSB

0

7

1

18

CS145 - Spring ‘22

// Include proper header file

// Initialize PIN 0 of PORT B as Output
// Initialize PIN 0 of PORT B as HIGH / ON

// Infinitely running loop

Program Example

19

CS145 - Spring ‘22

Instruction timing!

LED Blinking

20

CS145 - Spring ‘22

• Sometimes the compiler may remove the
delay loop when optimizing the code as
the delay loop isn’t doing anything but
waiting

• Trick is to use the keyword volatile while
initializing the variable to tell that its
needed in our program

Volatile Variable

21

CS145 - Spring ‘22

Program in Memory

• The program starts from the 0 location of a
memory where there is a program call

• The call jumps the program counter to the
main program which then returns to the
position after the program call

• There is a gap between the program call
and the main program

Main
Function

CALL

Gap

0

Memory

22

CS145 - Spring ‘22

Final Layout of the Circuit

+5V

10 kΩ

PB1

PB0

PS

ISP

2

1

23

CS145 - Spring ‘22

Input as a Push Button

• As we connected the LED to PIN
0 let’s connect the push button
to PIN 1

• As it should be initialized as
input, we make the PIN 1 of
DDRB equal to 0

• For input initialization the PORT
register is useless and the value
of the input should be initialized
in the PINB register

Example: if (PINB == 3) …

0

PB1Input

24

CS145 - Spring ‘22

Button Layout

+5V

PB1

10 K

Switch Pressed Switch Left idle

25

CS145 - Spring ‘22

Undefined State

+5V

Leaving Switch idle thus
has undefined value

26

CS145 - Spring ‘22

Processing on Pins

In order to check for selective bits, make
the rest zero and do bitwise AND

 00000010
 PINB ??????x?

 000000x0

for (;;){
…
if (PINB & 2) {

…
}

}

main(){
.
.
.
/* Set the DDRB properly
for LED and Push Button!*/
 for (;;){
 …
 // LED ON

…
// LED OFF

 }

Bit twiddling

27

See you next time :)

Q & A

28

