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Announcements (2022-04-07)

● Homework #1 is due tomorrow!

● You should have started the project 1 already!
○ Due date for partner formation is tomorrow as well
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Recap

● Cross Compilation
● GPIO  =>  State(s) – ON and OFF
                                     1    and  0
                                   +5V and  GND
● SFRs have a type and store data like variables. 
● SFR => More than variables
             PORT *, PIN *, DDR *              * = A / B / C / D
● Bit manipulation
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Common Bug

Instead if x = 12 was 
used what would 
happen??
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if (12 == x)
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Bit Operators

Not the same 
as && and ||
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Masking Bits – Operation Set Bit

You need bit-wise OR (“|”) operation to SET a bit
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Masking Bits – Reset / Clear Operation

You need bit-wise AND (“&”) operation to CLEAR a bit
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Creating Masks

Consider you want to clear every bit 
except the bit in the 5th position

Solution:
1. Create a standard mask

(mask = 1)
2. Left shift it by four spaces

(1 =>00010000)
3. AND it with the current value

(value & 00010000)

11011000Given 
Value

00000001
Standard 
Mask

00010000Created Mask 
after Bit Shift

&Final 
Value
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Clearing a Specific Bit

11011000Given 
Value

00000001
Standard 
Mask

00010000Created 
Mask after 
Bit Shift

11101111Invert the 
mask and 
Bitwise 
AND

&

Consider you want to clear the bit in the 5th 
position
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avr.h

Bit Operators Test this out

The ith bit of variable p
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Project 1 Roadmap

Blink according 
to instruction 
delay loops

What is the 
problem after 

this step?

Blink on Push 
Button

Transition 
from 1 MHz 

to 8MHz
Fix Timing

Use built-in Timers
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Step 1 Step 2 Step 3
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8 MHz Crystal
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Adding 8 MHz Crystal (Hardware Method)

8 MHz

Unpolarized
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If you’re using Microchip Studio:

1. You need to access the Fuse settings in Device Programming menu;

2. Last item in the list -> LOW.SUT_CKSEL;

3. Last choice -> “Ext. Crystal/Resonator High Freq.; Start-up time: 16K CK + 64 ms”;

4. DON’T CHANGE ANYTHING ELSE!

5. Click program and close!

Ref: https://microchipdeveloper.com/8avr:avrfuses
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Fuse in Software

https://microchipdeveloper.com/8avr:avrfuses
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If you’re using MPLAB X:

1. Window -> Target Memory Views -> Configuration Bits;

2. Click Read Configuration Bits;

3. Second item in the list -> FIELD == LOW.SUT_CKSEL;

4. Choose “Ext. Crystal/Resonator High Freq.; Start-up time: 16K CK + 64 ms”;

5. DON’T CHANGE ANYTHING ELSE!

6. Click Program Configuration Bits and close this window.

Ref: https://microchipdeveloper.com/mplabx:view-and-set-configuration-bits
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Fuse in Software

https://microchipdeveloper.com/mplabx:view-and-set-configuration-bits
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Fuse in Software

If you’re using something other than those (platformio?)…
GOOD LUCK :)

This might help though: 
https://caiobatista.com/uploads/courses/uci/s22/cs145/avrdude-examples.pdf
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https://caiobatista.com/uploads/courses/uci/s22/cs145/avrdude-examples.pdf
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Layout with Crystal

uP

OSC

SOC

8 MHz 
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Piezoelectric
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Work of an Oscillator
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Using R and C to control the Switching
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Timers - Bucket Analogy

• Capacity 
• Rate
• Overflow
• Seed

Calculate Seed based on T
Seed = Capacity – (T * Rate)
          = 5L – (3min * 1L/min)
          = 2L   
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Timer Block Diagram

8 Bit Timer

One CPU Time 
Unit(1)

+

Count from 0 to 255 
and set overflow flag 
and reset
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Your AVR has 3 physical internal 
timers.
Let’s use Timer0. 

OSC

Rate
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/**

 * avr.h

 * Copyright (C) 2001-2020, Tony Givargis

 */

#ifndef _AVR_H_

#define _AVR_H_

#include <avr/interrupt.h>

#include <avr/pgmspace.h>

#include <avr/io.h>

#define XTAL_FRQ 8000000lu

#define SET_BIT(p,i) ((p) |=  (1 << (i)))

#define CLR_BIT(p,i) ((p) &= ~(1 << (i)))

#define GET_BIT(p,i) ((p) &   (1 << (i)))

#define NOP() asm volatile("nop"::)

void avr_wait(unsigned short msec);

#endif /* _AVR_H_ */

/**

 * avr.c

 * Copyright (C) 2001-2020, Tony Givargis

 */

#include "avr.h"

void

avr_wait(unsigned short msec)

{

TCCR0 = 3;

while (msec--) {

TCNT0 = (unsigned char)(256 - (XTAL_FRQ / 64) * 0.001);

SET_BIT(TIFR, TOV0);

while (!GET_BIT(TIFR, TOV0));

}

TCCR0 = 0;

}

Software to Work with a Timer

Time in ms

Timer ON 
with Xtal 
Freq

Timer 
OFF

While loop 
calculates 
1 ms 23
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Turning the Timer On/Off

TCCR0 = 3;
.
.
.
TCCR0 = 0;
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Timer/Counter Control Register – TCCR0
(Refer to page 80~82 on ATmega32 Manual)
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Setting a Seed

TCNT0 = (unsigned char)(256 - (XTAL_FRQ / 64) * 0.001);
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Timer/Counter Register – TCNT0
(Refer to page 82 on ATmega32 Manual)
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Waiting for Overflow

SET_BIT(TIFR, TOV0);
while (!GET_BIT(TIFR, TOV0));
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Timer/Counter Interrupt Flag Register– TIFR
(Refer to page 83 on ATmega32 Manual)
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Why we use 
SET_BIT…



See you next time :)

Q & A


