
CS145 - Spring ‘22

Embedded Software
CS 145/145L

Caio Batista de Melo

CS145 - Spring ‘22

Announcements (2022-04-07)

● Homework #1 is due tomorrow!

● You should have started the project 1 already!
○ Due date for partner formation is tomorrow as well

2

CS145 - Spring ‘22

Recap

● Cross Compilation
● GPIO => State(s) – ON and OFF
 1 and 0
 +5V and GND
● SFRs have a type and store data like variables.
● SFR => More than variables
 PORT *, PIN *, DDR * * = A / B / C / D
● Bit manipulation

3

CS145 - Spring ‘22

Common Bug

Instead if x = 12 was
used what would
happen??

4

if (12 == x)

CS145 - Spring ‘22 5

Bit Operators

Not the same
as && and ||

CS145 - Spring ‘22 6

Masking Bits – Operation Set Bit

You need bit-wise OR (“|”) operation to SET a bit

CS145 - Spring ‘22 7

Masking Bits – Reset / Clear Operation

You need bit-wise AND (“&”) operation to CLEAR a bit

CS145 - Spring ‘22

Creating Masks

Consider you want to clear every bit
except the bit in the 5th position

Solution:
1. Create a standard mask

(mask = 1)
2. Left shift it by four spaces

(1 =>00010000)
3. AND it with the current value

(value & 00010000)

11011000Given
Value

00000001
Standard
Mask

00010000Created Mask
after Bit Shift

&Final
Value

8

CS145 - Spring ‘22

Clearing a Specific Bit

11011000Given
Value

00000001
Standard
Mask

00010000Created
Mask after
Bit Shift

11101111Invert the
mask and
Bitwise
AND

&

Consider you want to clear the bit in the 5th
position

9

CS145 - Spring ‘22 10

avr.h

Bit Operators Test this out

The ith bit of variable p

CS145 - Spring ‘22

Project 1 Roadmap

Blink according
to instruction
delay loops

What is the
problem after

this step?

Blink on Push
Button

Transition
from 1 MHz

to 8MHz
Fix Timing

Use built-in Timers

11

Step 1 Step 2 Step 3

CS145 - Spring ‘22 12

8 MHz Crystal

CS145 - Spring ‘22 13

Adding 8 MHz Crystal (Hardware Method)

8 MHz

Unpolarized

CS145 - Spring ‘22

If you’re using Microchip Studio:

1. You need to access the Fuse settings in Device Programming menu;

2. Last item in the list -> LOW.SUT_CKSEL;

3. Last choice -> “Ext. Crystal/Resonator High Freq.; Start-up time: 16K CK + 64 ms”;

4. DON’T CHANGE ANYTHING ELSE!

5. Click program and close!

Ref: https://microchipdeveloper.com/8avr:avrfuses

14

Fuse in Software

https://microchipdeveloper.com/8avr:avrfuses

CS145 - Spring ‘22

If you’re using MPLAB X:

1. Window -> Target Memory Views -> Configuration Bits;

2. Click Read Configuration Bits;

3. Second item in the list -> FIELD == LOW.SUT_CKSEL;

4. Choose “Ext. Crystal/Resonator High Freq.; Start-up time: 16K CK + 64 ms”;

5. DON’T CHANGE ANYTHING ELSE!

6. Click Program Configuration Bits and close this window.

Ref: https://microchipdeveloper.com/mplabx:view-and-set-configuration-bits

15

Fuse in Software

https://microchipdeveloper.com/mplabx:view-and-set-configuration-bits

CS145 - Spring ‘22

Fuse in Software

If you’re using something other than those (platformio?)…
GOOD LUCK :)

This might help though:
https://caiobatista.com/uploads/courses/uci/s22/cs145/avrdude-examples.pdf

16

https://caiobatista.com/uploads/courses/uci/s22/cs145/avrdude-examples.pdf

CS145 - Spring ‘22 17

Layout with Crystal

uP

OSC

SOC

8 MHz

CS145 - Spring ‘22 18

Piezoelectric

CS145 - Spring ‘22 19

Work of an Oscillator

CS145 - Spring ‘22 20

Using R and C to control the Switching

CS145 - Spring ‘22 21

Timers - Bucket Analogy

• Capacity
• Rate
• Overflow
• Seed

Calculate Seed based on T
Seed = Capacity – (T * Rate)
 = 5L – (3min * 1L/min)
 = 2L

CS145 - Spring ‘22

Timer Block Diagram

8 Bit Timer

One CPU Time
Unit(1)

+

Count from 0 to 255
and set overflow flag
and reset

22

Your AVR has 3 physical internal
timers.
Let’s use Timer0.

OSC

Rate

CS145 - Spring ‘22

/**

 * avr.h

 * Copyright (C) 2001-2020, Tony Givargis

 */

#ifndef _AVR_H_

#define _AVR_H_

#include <avr/interrupt.h>

#include <avr/pgmspace.h>

#include <avr/io.h>

#define XTAL_FRQ 8000000lu

#define SET_BIT(p,i) ((p) |= (1 << (i)))

#define CLR_BIT(p,i) ((p) &= ~(1 << (i)))

#define GET_BIT(p,i) ((p) & (1 << (i)))

#define NOP() asm volatile("nop"::)

void avr_wait(unsigned short msec);

#endif /* _AVR_H_ */

/**

 * avr.c

 * Copyright (C) 2001-2020, Tony Givargis

 */

#include "avr.h"

void

avr_wait(unsigned short msec)

{

TCCR0 = 3;

while (msec--) {

TCNT0 = (unsigned char)(256 - (XTAL_FRQ / 64) * 0.001);

SET_BIT(TIFR, TOV0);

while (!GET_BIT(TIFR, TOV0));

}

TCCR0 = 0;

}

Software to Work with a Timer

Time in ms

Timer ON
with Xtal
Freq

Timer
OFF

While loop
calculates
1 ms 23

CS145 - Spring ‘22

Turning the Timer On/Off

TCCR0 = 3;
.
.
.
TCCR0 = 0;

24

CS145 - Spring ‘22

Timer/Counter Control Register – TCCR0
(Refer to page 80~82 on ATmega32 Manual)

25

CS145 - Spring ‘22

Setting a Seed

TCNT0 = (unsigned char)(256 - (XTAL_FRQ / 64) * 0.001);

26

CS145 - Spring ‘22 27

Timer/Counter Register – TCNT0
(Refer to page 82 on ATmega32 Manual)

CS145 - Spring ‘22

Waiting for Overflow

SET_BIT(TIFR, TOV0);
while (!GET_BIT(TIFR, TOV0));

28

CS145 - Spring ‘22

Timer/Counter Interrupt Flag Register– TIFR
(Refer to page 83 on ATmega32 Manual)

29

Why we use
SET_BIT…

See you next time :)

Q & A

