Embedded Software

CS 145/145L

Caio Batista de Melo

CS145 - Spring 22

Announcements (2022-04-07)

e Homework #1 is due tomorrow!

e You should have started the project 1 already!

o Due date for partner formation is tomorrow as well

% CS145 - Spring ‘22 5

Cross Compilation
GPIO => State(s) — ON and OFF
1 and O

+5V and GND
SFRs have a type and store data like variables.
SFR => More than variables

PORT *, PIN *, DDR * *=A/B/C/D

Bit manipulation

% CS145 - Spring ‘22

Common Bug

int =z
Instead if x = 12 was
% = 38 used what would
happen??
1f(x == 1A2) i if (12 == Xx)

% CS145 - Spring ‘22 A

Bit Operators

Operator Description
& bitwise AND
Not the same | bitwise OR
@JA bitwise exclusive OR
<< shift left
>> shift right
~ one’s complement

% CS145 - Spring ‘22 5

Masking Bits — Operation Set Bit

Setting bits to 1

If you need io turn on a specific bit, you can do this using the OR bitwise operation and a suitable mask. For example, if you need toturnon Bit 4 and Bit 7 of a
byte (remember that the bit on the right hand side is Bit 0), you can use the mask 1001 0000 and the OR bitwise operation.

7 6 5 4 3 2 1 0 Bit position
0 0 0 0 0 0 0 0 Data
1 0 0 1 0 0 0 0 Mask
1 0 0 1 0 0 0 0 OR Result

You need bit-wise OR (“|”) operation to SET a bit

V1A CS145 - Spring 22 6

Masking Bits — Reset / Clear Operation

Resetting bits to 0
You can't force a bit to be 0 using the OR command. You can use the bitwise command AND along with a suitable mask, however. For example, suppose you
wanted 1o reset Bits 0, 1 and 2 in a byie but leave all the other bits as they were. You would use the mask 1111 1000 along with the AND hitwise operator.

7 6 5 4 3 2 1 0 Bit position
0 1 0 1 0 1 1 Data
1 1 1 1 1 0 0 0 Mask
AND
1 1 1
a & 0 . : Result

You need bit-wise AND (“&”) operation to CLEAR a bit

WA CS145 - Spring ‘22 7

Creating Masks

Consider you want to clear every bit Given === | 11011000
except the bit in the 5™ position Value

Standard

Solution: Mask = | 00000001
1. Create a standard mask

(mask = 1) Created Mask === | 00010000
2. Left shift it by four spaces after Bit Shift

(1=>00010000) Final m===) | 11011000] & |00010000
3. AND it with the current value Value

(value & 00010000)

% CS145 - Spring ‘22 g

Clearing a Specific Bit

Consider you want to clear the bit in the 51
position

CS145 - Spring 22

Given :>

Value

Standard
Mask

Created
Mask after
Bit Shift

Invert the

11011000

00000001

00010000

mask and
Bitwise
AND

11101111

11011000

Bit Operators

>

/xx
* avr.h
* Copyright (C) 2001-2028, Tony Givargis
*/

#ifndef _AVR_H_
#define _AVR_H_

#include <avr/interrupt.h>
#include <avr/pgmspace.h>

#include <avr/io.h>

#define XTAL_FRQ 3@@ees5iu

#define SET_BIT(p,i) ((p) |= (1 << (i)))
#define CLR_BIT(p,1i) ((p) &= ~(1 << (i)))
#define GET_BIT(p,i) ((p) & (1 << (1))

#define NOP() asm volatile("nop"::)
void avr_wait(unsigned short msec);

#endif /* _AVR_H_ */

CS145 - Spring 22

The i, bit of variable p

Test this out

S

10

Project 1 Roadmap

Step 1 Step 2 Step 3
Blink on Push Transition R
Button from 1 MHz Fix Timing
to SMHz
Blink according What is the Use built-in Timers
to instruction problem after
delay loops this step?

% CS145 - Spring ‘22 .

8 MHz Crystal

ATSO08A

Digi-Key Part Number CTX406-ND
Manufacturer CTS-Frequency Controls
Manufacturer Product Number ATSO8A
Supplier CTS-Frequency Controls
Description CRYSTAL 8.0000MHZ 20PF TH

Image shown is & re.:.'esen:s!‘;n only. Exact Manufacturer Standard Lead Time 24 Weeks

specifications should be obtained from the product

dats sheet Detailed Description 8 MHz +30ppm Crystal 20pF 60 Ohms HC-49/US

- ﬁ] o Customer Reference
e
. Datasheet gm Datasheet

V1A CS145 - Spring 22 12

Adding 8 MHz Crystal (Hardware Method)

|

(XCK/TO) PBO] 1 40 [J PAO (ADCO)
(T1) PB1] 2 39 [J PA1 (ADC1)
(INT2/AINO) PB2] 3 38 [J PA2 (ADC2)
(OCO/AIN1) PB3] 4 % 37 [OJ PA3 (ADC3)
(85) PB4 (]| 5 o 36 [PA4 (ADC4)
(MOSI) PB5] 6 & 35 [J PA5 (ADCS5)
(MISO) PB6]| 7 34 7 PA6 (ADCS)
(SCK) PB7] 8 S 33 [J PA7 (ADC?)

RESET]| 9 a 32 [0 AREF

vec] 10 &/ 31 [3J GND

GND] 11 B 30 [0 AVCC

L xra2 12 ~ 20p per (TOSC2)
8 MHz | —XFAL+£1 13 @ 28 [0 PCe (TOSCH)

— (RXD) PDO] 14 & 27 |0 PC5 (TDI)
) (TXD) PD1] 15 E 26 [0 PC4 (TDO)
Unpolarized (INTO) PD2] 16 5 25 [0 PC3 (TMS)
(INT1) PD3 | 17 24 [PC2 (TCK)
(OC1B) PD4 (] 18 23 [J PC1 (SDA)
(OC1A) PD5] 19 22 |1 PCO (SCL)
(ICP1) PD6] 20 21 [PD7 (0OC2)

V1A CS145 - Spring 22 13

Fuse in Software

If you’re using Microchip Studio:

You need to access the Fuse settings in Device Programming menu;

Last item in the list -> LOW.SUT_CKSEL;

Last choice -> “Ext. Crystal/Resonator High Freq.; Start-up time: 16K CK + 64 ms”;
DON'T CHANGE ANYTHING ELSE!

Click program and close!

o > w0 h =

Ref: https://microchipdeveloper.com/8avr:avrfuses

% CS145 - Spring 22 14

https://microchipdeveloper.com/8avr:avrfuses

Fuse in Software

If you're using MPLAB X:

Window -> Target Memory Views -> Configuration Bits;

Click Read Configuration Bits;

Second item in the list -> FIELD == LOW.SUT_CKSEL,;

Choose “Ext. Crystal/Resonator High Freq.; Start-up time: 16K CK + 64 ms”;
DON'T CHANGE ANYTHING ELSE!

Click Program Configuration Bits and close this window.

o a0~ e bh =

Ref: https://microchipdeveloper.com/mplabx:view-and-set-confiquration-bits

% CS145 - Spring ‘22 s

https://microchipdeveloper.com/mplabx:view-and-set-configuration-bits

Fuse in Software

If you’re using something other than those (platformio?)...
GOOD LUCK :)

This might help though:
https://caiobatista.com/uploads/courses/uci/s22/cs145/avrdude-examples.pdf

% CS145 - Spring 22 16

https://caiobatista.com/uploads/courses/uci/s22/cs145/avrdude-examples.pdf

Layout with Crystal

uP

0OSC

8 MHz

SOC

% CS145 - Spring ‘22 7

Piezoelectric

No Pressure Pressure

> 5 WUl
2= 332
%@@ oD D D

V=0 V>0 %

% CS145 - Spring ‘22 8

Work of an Oscillator

NOT

Clk OUT

CS145 - Spring 22

- fuuuun

19

Using R and C to control the Switching

.—Do—t a

Inverter

% CS145 - Spring ‘22 20

Timers - Bucket Analogy

« Capacity
A » Rate
S « Overflow
~ - Seed

Calculate Seed basedon T
Seed = Capacity — (T * Rate)
= 5L -3 . *1

min L/min)
= 2L

% CS145 - Spring ‘22 .

Timer Block Diagram

Your AVR has 3 physical internal
timers.
Let’s use TimerO.

A4

& Bit Timer <

Count from 0 to 255
and set overflow flag
and reset

A

One CPU Time
Unit(1)

I

CS145 - Spring 22

Rate

OSC

22

Software to Work with a Timer

#ifndef _AVR_H_
#define _AVR_H_

#include "avr.h"
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include <avr/io.h>

void
avr_wait(unsigned short msec)

#define XTAL_FRQ 80000001u {
_ TCCRO = 3;
#define SET_BIT(p,i) ((p) |= (1 << (i))) Timer ON while (msec--) {
#define CLR_BIT(p,i) ((p) & ~(1 << (i))) with Xtal TCNT@ = (unsigned char)(256 - (XTAL_FRQ / 64) * 0.001)];
#define GET_BIT(p,i) ((p) & (1 << (1)) Freq SET BIT(TIFR TOV@)'
— 3)
#define NOP() asm volatile("nop"::) . . while (!GET_BIT(TIFR, TOV®));
Time in ms }
void avr_wait(unsigned short msec); <:| :>TCCRO - o; A
pendie Titmer
enal
OFF
While loop
calculates

o WY CS145 - Spring 22 1 ms 23

Turning the Timer On/Off

TCCRO = 3;

TCCRO = 0;

% CS145 - Spring ‘22 2%

Timer/Counter Control Register —- TCCRO0

(Refer to page 80~82 on ATmega32 Manual)

e Bit 2:0 — CS02:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter.
Table 42. Clock Select Bit Description

CS02 CSo1 CS00 | Description
0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clk;o/(No prescaling)
0 1 0 clk;o/8 (From prescaler)
0 1 1 clk;o/64 (From prescaler)
1 0 0 clk,o/256 (From prescaler)
1 0 1 clk,o/1024 (From prescaler)
1 1 0 External clock source on TO pin. Clock on falling edge.
1 1 1 External clock source on TO pin. Clock on rising edge.

% CS145 - Spring ‘22 55

Setting a Seed

TCNTO = (unsigned char)(256 - (XTAL_FRQ /64) * 0.001);

% CS145 - Spring ‘22 i

Timer/Counter Register —- TCNTO

(Refer to page 82 on ATmega32 Manual)

Bit 7 6 5 4 3 2 1 0

| TCNTO[7:0] | TcnTo
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNTO Register blocks (removes) the compare
match on the following timer clock. Modifying the counter (TCNTO) while the counter is running,
introduces a risk of missing a compare match between TCNTO and the OCRO Register.

% CS145 - Spring ‘22 -

Waiting for Overflow

SET_BIT(TIFR, TOVO0);
while (IGET_BIT(TIFR, TOVO0));

% CS145 - Spring ‘22 -

Timer/Counter Interrupt Flag Register— TIFR

(Refer to page 83 on ATmega32 Manual)

Timer/Counter

Interrupt Flag Register ; 7 6 5 4 3 2 1 0

- TIFR [ocF2 | Tovz | IcFi | OCF1A | OCFiB | TOVi | OCFo | Tovo | TIFR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 1 — OCF0: Output Compare Flag 0

The OCFO bit is set (one) when a compare match occurs between the Timer/Counter0O and the
data in OCRO — Output Compare Register0. OCFO is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, OCFO is cleared by writing a logic one to
the flag. When the I-bitin SREG, OCIEO (Timer/Counter0 Compare Match Interrupt Enable), and
OCFO are set (one), the Timer/Counter0 Compare Match Interrupt is executed.

e Bit 0 - TOVO: Timer/Counter0 Overflow Flag

Why we use The bit TOVO is set (one) when an overflow occurs in Timer/Counter0. TOVO is cleared by hard-
SET BIT... | ware when executing the corresponding interrupt handling vector. Alternatively, TOVO is cleared
— by writing a logic one to the flag. When the SREG I-bit, TOIEO (Timer/Counter0 Overflow Inter-

rupt Enable), and TOVO are set (one), the Timer/CounterO Overflow interrupt is executed. In
phase correct PWM mode, this bit is set when Timer/Counter0 changes counting direction at
$00.

WIS CS145 - Spring ‘22

29

See you next time :)

Q&A

